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Master equation for strongly interacting systems 

H J Carmichaelt and D F Walls 
School of Science, University of Waikato, Hamilton, New Zealand 

Received 2 April 1973 

Abstract. A dissipating system consisting of two strongly interacting subsystems, each 
coupled to its respective thermal reservoir is considered. The usual method for obtaining 
a master equation for the reduced density operator of such a system is to assume the factor- 
ization of this density operator in the derivation of the irreversible term, retaining the coupling 
in the reversible term alone. This approach has the serious limitation that it fails to preserve 
detailed balance in general and yields an incorrect canonical form for the stationary solution 
of the density operator. A general approach, based on the introduction of a new interaction 
picture, is presented. This method is illustrated by applying it to a coupled bosoli system 
and to a two-level atom interacting with a single mode of the electromagnetic field. 

1. Introduction 

The master equation approach and the related Fokker-Planck and Langevin equation 
approaches have proved to be powerful methods for the treatment of a single quantum 
system interacting with a thermal reservoir. However, the current application of the 
master equation technique to coupled systems involves an approximation which intro- 
duces a serious defect, especially for strong coupling. Such applications of the master 
equation to coupled systems include the laser, super-radiance and certain problems in 
nonlinear optics. The reader is referred to the articles of Haken (1969), Pike (1970) 
and Agarwal(l973) for a review and extensive bibliography. 

In evaluating the irreversible part of the master equation, it has been the practice 
to assume that the reduced density operator p for the entire system factorizes into the 
product of the individual density operators pA and pB for the coupled subsystems A 
and B. The irreversible part of the master equation is then given by 

Hence, retaining the coupling in the reversible term, the full master equation 
form 

This approximation has been considered valid under the assumption 

(1.1) 

takes the 

(1.2) 

of weak 
coupiing. However, the master equation derived from equation (1.1) has the serious 
deficiency that it fails to satisfy the basic symmetry of detailed balance in general. 
t This paper is based on a thesis submitted by H J Carmichael to the University of Auckland in partial 
fulfilment of the requirements for the MSc degree. 
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Furthermore, it may be shown that it leads to the incorrect canonical form for the 
stationary solution of the density operator. For an interaction hamiltonian HAB which 
commutes with the free hamiltonians HA and H,, the stationary form for the density 
operator derived from equations (1.1) and (1.2) is 

p = exp -___ ( 
which is inconsistent with the system hamiltonian. 

The limitations of the factorization ansatz were first recognized by Walls (1970), 
who illustrated them by considering coupled boson-field modes interacting with heat 
baths at the same temperature. In this case it was possible to include the coupling to 
all orders in the irreversible part of the master equation by a transformation to normal 
modes. The only other publication to date on this subject is that of Schwendimann 
(1972) who derived a condition for the validity of the approximate master equation for 
the case of N atoms interacting with a single-field mode. 

In this paper we introduce a general approach to the problem, the basic concept of 
which involves the introduction of a new interaction picture for internally coupled 
systems. We illustrate this method by its application to (i) two coupled boson-field 
modes, and (ii) a two-level atom interacting with an electromagnetic field mode. 

2. A new interaction picture for treating internally coupled systems 

The techniques for treating a single quantum system S coupled to a thermal reservoir 
R are now well known (see eg Haken 1969, Louise11 1969, Senitzky 1960, 1961). 

Writing the complete hamiltonian for S plus R as 

H = Hs+HR+HsR (2.1) 
the markoffian master equation in the Born approximation for the reduced density 
operator p of the system in the interaction picture reads 

wherefo(R) is the density operator for the reservoir and 

p ( t )  = exp (i:) - t  p(t)exp ( - - t  i f s )  

(2.3) 

We consider a system consisting of two subsystems A and B, with free hamiltonians 
HA and H,, which are coupled via the interaction hamiltonian HAB. Each of these 
subsystems is coupled to its respective reservoir RA or R B  via the interaction hamil- 
tonians HARA and HBRB respectively. Thus if we designate the free hamiltonians for 
these independent reservoirs by HR, and HRe, the total hamiltonian assumes the form 

(2.4) H = HA+ H, + HA, + HR, + HR, + HARA + HBRB. 

All operators from the subsystems A and B commute with all operators from R A  and 
RB, and all operators from RA commute with all those from R,. 
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Now following the normal practice adopted in perturbation theory, we might group 
the hamiltonians in equation (2.4) so that the total hamiltonian reads 

Then if we work in the normal interaction picture for the construction of the master 
equation for the reduced density operator pAB(t) of the system A plus B following 
standard methods we obtain 

1 
-- - s['AB(O), - f [: TrR(['AB(t) + R A R ~ ( t )  + 'BRB(~), ['AB"') 

at 

+ R A R ~ ( t ' )  + RBRB(t'), dt' (2.7) 

where f A B ( t )  is the density operator for the system plus reservoir. The trace is taken 
over the complete reservoir consisting of RA plus RB and 

ABR,(t) = exp (i;o) -t HBR, exp ( --t i;o ) 
;Y"AB(t) = exp i fo) - t  x AB (t)exp ( --t 'io) 

The usual master equation obtained using the factorization ansatz in the derivation 
of the irreversible term, when written in this interaction picture takes the form 

This may obviously be obtained from equation (2.7) by ignoring the internal interaction 
in the integral and proceeding to the Born and markoffian approximations in the usual 
manner. 

Attempts to treat HA, to higher orders by further iteration of the integrals may be 
made. However, it is of far greater advantage to find a technique which treats HA, to 
all orders. This can be achieved quite simply by regrouping the hamiltonian (2.4) in 
a manner consistent with the formalism for single quantum systems. The derivation 
of equation (2.2) makes no assumptions about the explicit form of the hamiltonian (2.1). 
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Consequently, if we abandon the grouping in equation (2.5) and for it substitute that 
of equation (2.1) with 

(2.10) 

we may apply the master equation (2.2) directly. This accomplishes our aim of treating 
HA, to all orders as well as allowing us to treat both single and internally coupled 
systems under a consistent formalism. This technique obviously amounts to using an 
interaction picture with HA, included as part of H ,  rather than H, .  If we are able to 
find solutions to the Heisenberg equations of motion 

(2.1 1) 

we may obtain the master equation in operator form. If it is not possible to obtain 
solutions to the Heisenberg equations of motion, as for nonlinear problems, we may 
obtain the master equation for the matrix elements of the density operator. 

3. The master equation for coupled boson-field modes 

As an illustrative example of a problem to which the technique described above may be 
successfully applied to obtain the master equation in operator form, we consider inde- 
pendent boson-field modes a and b coupled at resonance. Both modes are damped 
by coupling to thermal reservoirs R, and R, respectively. Adopting the notation for 
the total hamiltonian in equations (2.1) and (2.10), the system hamiltonian reads 

H s  = Ha + H ,  + Ha,  = Z ~ W , U ~ U +  h , b t b +  hic(atb + abt) (3.1) 

where oo is the resonant frequency and ic the coupling constant for the internal inter- 
action. (Throughout this paper all coupling constants are assumed to  have been made 
real by the appropriate choice of the arbitrary phases for the vector-mode functions 
in the expansion of the field.) The creation, annihilation operator pairs ut,  a and by, b 
obey boson commutation relations, and the interaction hamiltonian is given in the 
rotating-wave approximation. (In a future publication we will relax this condition.) 

The above type of coupling is found in the parametric frequency converter (Louise11 
et a1 1961) and also in polaritons (Loudon 1969) which exhibit strong photon-phonon 
coupling. 

Following the discussion of the previous section, we should now be able to obtain 
the required master equation by the direct application of equation (2.2) using the 
hamiltonian defined above. Having converted this equation into the Schrodinger 
picture, this leads us to a master equation for the reduced density operator p of the form 

b 

- a P  = -[&PI+ 1 ("i' + (g)irrev at 1h at irrev 
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where 

with 

(3.3) 

After making the standard assumptions regarding the properties of the reservoirs 
and the form of the reservoir interactions HaRa and HbRb (Weidlich and Haake 1965a, b, 
Haake 1969), substitution of the hamiltonians into equations (3.2)-(3.4) followed by a 
certain amount of tedious but straightforward algebra leads to the master equation? 

ap = 7 [hwoata+hwobtb+hh-(atb+abt), p]+%yi+y;)([a, pat]+[ap, at]) 
1 

at 1h 

+%Yi-Yae)([a, pbtI+[bp, a t l ) + ~ r i n ~ + y ; n ~ ) ( [ a p ,  atl+[at,  pal) 

+ % y i E i  - y;fi;)([at, pbl + [up, btl + [bt, pal + [bp, at11 

+it& + Y W b  Pbtl + [bp, btl +%I$ - Y3([b7 pat] + [ a p ,  btl) 
+ Mfii + YkfiMbP, b+I + [bt, pbl) 

+ %(rkni - YXi)([bt, pal + [ b p ,  at1 + [at, pbl + [up, btl). (3.5) 

The terms with coefficients involving y2PB are damping terms, the damping constants 
being defined by 

where 

wA,B = a. f K .  (3.7) 

Here ga(w;) is the frequency spectrum for the reservoir Ra and Ka(w7) is the coupling 
constant between mode a and the component of Ra corresponding to the eigenvalue a;. 
&(ay) and K ~ ( c o ~ )  are similarly defined. We note that since the reservoirs are assumed 
to have a reasonably flat frequency spectrum, y 2 b  and y;b will differ little unless the 
coupling is strong and hence K / W ~  - 1. The greatest effect of the coupling in the 
irreversible part of the master equation will appear in the terms with coefficients 
involving ii2;, which for reservoirs in thermal equilibrium at a temperature T are 
given by 

= {exp(hwq.b/kT)- l}-’I (3.8) Ea,b - -a,b 
A,B - (a;’b) 

lWfl.”=w*.e w ~ ~ ” = o A , B  

and therefore become highly frequency sensitive as ha,,, approaches the thermal 
energy kT. The effect on fluctuation terms is also relatively small if ha,,, >> kT. 

t During the preparation of this paper it was drawn to  our attention that Agarwal (1973) has derived using 
identical methods such a master equation for coupled boson systems. 



Master equation f o r  strongly interacting systems 1557 

Using standard techniques, the master equation (3.5) may be used to solve for time- 
dependent expectation values of system observables. For the system considered above, 
these may also be obtained from the explicit solutions for the operator equations which 
are available via the method illustrated in the appendix. 

4. The Fokker-Planck equation 

Extensive use of the Fokker-Planck equation technique has been made in quantum- 
mechanical damping studies. This equation has distinct advantages over the master 
equation in operator form for the investigation of quantum statistics, since it is a c 
number equation and hence may be solved in closed form. In order to  convert our 
master equation (3.5) into a Fokker-Planck equation, we must assume that the reduced 
density operator p(t)  possesses a time-dependent P representation (Glauber 1963a, b) 
defined by 

p(t)  = la' ",(a, p, t )  d2a d2p 
lT 

(4.1) 

where the coherent states la, p )  are simultaneous eigenstates of the operators a and b. 
Then utilizing standard techniques (see Haken 1969, Louise11 1969), P(a, p, t )  can be 
shown to satisfy the Fokker-Planck equation 

+ (q + im,) $ p+ ( r; + Y; - iw o) &-a* 

For a Fokker-Planck equation of the form 

(4.3) 
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the detailed balance conditions are (Graham and Haken 1971, Agarwal 1972, Risken 
1972) 

H J Carmichael and D F Walls 

where 

Ai" = ~ { A i ( { x i } ) f A i ( { n i } ) }  Ai" = i { A i ( { X i } ) * A i ( { Z i  

Here ( 2 , )  are the variables obtained from { x i }  under time reversal and the upper or 
lower sign is taken according to  whether x i  is even or odd under time reversal. 

It may readily be shown that for the case of thermal equilibrium, the detailed balance 
conditions are satisfied by the Fokker-Planck equation (4.2). Master equations for 
coupled systems derived from equation (1.2) do not in general satisfy detailed balance 
except in the particular case where the interaction hamiltonian HAB commutes with the 
free hamiltonian HA +HB (Carmichael and Walls to  be published). 

The Green function solution to  our Fokker-Planck equation (4.2) arises under the 
condition that both field modes are initially in coherent states. A method for constructing 
this Green function solution for Fokker-Planck equations of the type above is given 
by Wang and Uhlenbeck (1945). For identical reservoirs it assumes the form 

P ( U ,  8, t ; a, 9 P o  3 0) 

(4.6) 

where we have put y i , B  = y i , B  = yA,B and 
readily shown that the stationary solution for the density operator is of the form 

= = E,,,, from which it may be 

(4.7) 

That is, the system relaxes to  the correct steady state corresponding to the full hamil- 
tonian Ha + Hb + Hab. 

5. A two-level atom coupled to a single electromagnetic field mode 

In this section we consider a single two-level atom coupled at resonance to  a single 
mode of the electromagnetic field. The field mode is damped by coupling to a thermal 
reservoir. This is a nonlinear problem for which the Heisenberg equations of motion 
(2.1 1) cannot be solved, hence we shall derive the master equation for the matrix elements 
of the reduced density operator. 



Master equation fo r  strongly interacting systems 1559 

Using the notation of equation (2.1), the system hamiltonian is given by 

H ,  = H,+ H A +  H,, = hooata+~hwOo,+hic(ao+ +ate-) (5.1) 

where the interaction term H,, is given in the rotating wave approximation. The 
creation and annihilation operators at, a for the field mode obey boson commutation 
relations and the pseudospin operators for the atom obey the anticommutation relations 

The field mode is damped through coupling to  a thermal reservoir 

H,, = + a+r ,  (5.3) 

where the rR, r,: represent the reservoir operators. 

equation (2.2), and is given in the Schrodinger picture by 
As for the preceding problem the master equation may be obtained directly from 

where 

with 

(5.4) 

We cannot obtain the explicit operator form of this equation since the nonlinear 
Heisenberg equations of motion are not solvable. However, if we adopt the repre- 
sentation defined by the basic kets Im, 0, where m = 0, 1, .  . . represents the occupation 
number of the field mode and < = f 1 represents the upper and lower levels of the atom, 
we are able to derive equations for the matrix elements pm,6,n,g of the reduced density 
operator via the equation 

at = ( m  <I{ k [ H , ,  PI + (%) irre"] 1 %  'I). (5.7) 

For simplicity we only consider the diagonal elements pn, + ,n ,  + , pn + - ,n + - here. 
Treating the reservoir in standard fashion, all system operators are expanded in terms 
of their representatives and the orthonormality of the basic vectors used to  write the 
integrand of the irreversible term (5 .5 )  in terms of the factors 
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If we then make use of the ‘transition probabilities’ (Jaynes and Cummings 1963) 

r,  + exp +-t s, + 

r, - exp +-t s, - = exp{ &iao(r-+)t} cos Kr1I2t 

= Sr,sexp{ +io,(r++)t) cos K ( r +  l ) l l 2 t  ( I i i:sil ) 
( 1 ( i:il ) 
( I Kil ) 

(5.8) 
r,  + exp f--t s, - = fiSr,s-l exp{fioo(r++)t} sin K ( r +  I)’% 

( r ,  -Jexp( +?r) Is ,  +) = kitjr,s+l exp{kioo(r-~)t}sinKr”2t 

we arrive after long and tedious algebraic manipulation at the two equations 

where 

i = 1, ..., 8 
6, = fi(Oi)l 

. 1wj=wi 

and 

(5.11) 

(5.12) 
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and 

d P n +  1, - ,n + 1 .- 
at 

where 

The first term on the right-hand side of each of these equations describes the reversible 
motion of the system, the remaining terms the irreversible motion. 

It is easily seen that in the weak-coupling limit K + 0, both the above equations 
reduce to 

where 

(5.16) 

which is the equation for an uncoupled damped field mode and the expression obtained 
for the irreversible term if the factorization ansatz is used. Apart from the modifications 
to the drift coefficients red, r<J and the diffusion coefficients SXJ, ACJ appearing in 
equations ( 5 . 8 )  and (5.12), the difference between the irreversible terms of our new 
equations and equation (5.15) lies in the prediction of a dependence of the diagonal 
elements on the nondiagonal elements. These nondiagonal elements are related to 
the atomic transition probabilities, and this dependence arises out of the atomic transi- 
tions involved in the crosscoupling of the atom to the reservoir. This destroys the 
property of the usual Pauli-type master equation where diagonal matrix elements are 
coupled only to  diagonal matrix elements. The nondiagonal terms are only important 
for the matrix elements corresponding to low-field mode population, for example, 
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spontaneous emission, since for large n 

and the irreversible part of both equations reduces to that obtained using the factor- 
ization ansatz. 

As with the previous example, under the assumption of a nearly flat frequency 
spectrum all the y i  (5.10) differ little except for large IC, and hence 

(5.17) 

(5.18) 

The main effect arises in the diffusion terms when the resonant energy hw, is of the 
order of the thermal energy kT of the reservoir. 

6. Conclusions 

We have derived a master equation for dissipating coupled systems which includes 
the coupling to  all orders in the irreversible part of the master equation. This is shown 
to remove certain deficiencies contained in the usual derivation of the master equation 
for coupled systems. In particular our master equation satisfies detailed balance and 
yields the correct canonical form for the steady-state density operator. Future applica- 
tions of this technique include a derivation of the laser master equation without employ- 
ing the usual factorization ansatz between atoms and field in deriving the irreversible 
part of the master equation. 
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Appendix 

We consider two coupled harmonic oscillators a and b and for simplicity consider only 
one of these oscillators to  be coupled to a heat bath consisting of an infinite number of 
harmonic oscillators { r j ) .  The total hamiltonian is then 

H = hwata+ hwbtb+ hlc(atb+abt)+ h 1 cojrJrj+ h 1 gjbrf + h gTbtrj 
j j j 

where IC and g j  are coupling constants and the operators a, b and { r j }  all obey boson 
commutation relations. 
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The Heisenberg equations of motion derived from the above hamiltonian are 

da _ -  - -ha- iKb 
dt 

db 

dt j 

_ -  - -iob-ilca-iCgjrj 

- drj  = -iwjrj-igTb. 
dt 

Taking the Laplace transforms of the above equations we obtain 

(s + io)a(s) = a - iK6(s) 

(s + io)&) = b - iica(s) - i 

(s + ioj)Fj(s) = r j  - igT6(s) 

gjFj(s) 
j 

where 

G(s) = e-S‘o(t)dt s: 
and o is the operator in the Schrodinger picture at t = 0. The solution to  these equations 
for a(s) and 6(s) may be derived in approximate form using a Wigner-Weiskopff type 
method (see Louise11 1964) 

/KI2 

s + io + (z j  Igj12)/(s + ioj) 

ilca g .r . 
s+iwj  s+ io  b---ix+), s + i o  s+ iwj  (A.5) 

The inverse transform of these equations may readily be shown to be 
1 

a(t) eiot = exp(-at){(A cos At -$y sin it)a-iK sin Atb} 
i 

X 
($y - iAj)’ + i. 
1 

b(t) eiWf = exp(-flr){(A cos A t  -ay sin 1t)b-iK sin i ta} E, 

iAj 
exp( - iAjt) 

+exp(-$yt) { ($y - iAj)’ id  + A 2  ) sinIr]] (A.7) 
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and 

w k = w  
? = 2 7 c k k 1 2 P ( w k )  

where P ( q )  is the mode density of the bath oscillators, and we have neglected the small 
frequency shift terms 

In both these solutions the part involving the operators a and b corresponds exactly 
to the classical solution for one damped oscillator coupled to an undamped oscillator. 
However, both solutions a(t) and b(t) contain a dependence on the bath operators r j .  
This is necessary in a quantum-mechanical calculation to preserve the canonical com- 
mutation relations. The oscillator b which is coupled directly to the bath has a coupling 
constant with the bath operators proportional to g j .  The oscillator a which is not 
coupled directly to the heat bath contains a second order dependence on the heat bath 
operators proportional to K g j .  

As t + CO both oscillators decay exponentially into the heat bath, the exponential 
decay being modulated by the factors e *i’f. For $y > K this damped oscillation becomes 
pure damping, that is, the system is overdamped. The interdependence of all the inter- 
acting components readily apparent in the operator solutions clearly illustrates the 
weakness of the factorization ansatz in the derivation of the master equation. 
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